
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  16 ( 1 9 8 1 )  6 3 8 - 6 4 8  

Co-operative effects in non-linear relaxation 

L. A. D I S S A D O ,  R. M. H I L L  
Chelsea College, University of London, Pulton Place, London SW6 5PR, UK 

A many-body, co-operative, theory of relaxation recently presented by the authors is 
extended to the case of non-linear response in the time domain to the application of high 
force fields. It is shown that the characteristic fractional power law time decay of the 
initial perturbation is an essential feature of co-operative relaxation. The application of 
the theory to experimental situations is considered. 

1. Introduction 
A theory describing the dynamics of relaxation in 
co-operative, many-body, systems has recently 
been presented [ 1 ]. The co-operative nature of the 
system generates a relaxation rate equation which 
is non-linear in the deviation from equilibrium. 
The equilibrium, itself, being a non-linear function 
of the external perturbation causing the deviation. 
A simple, linearized, form for the solutions to the 
non-linear functions has been successfully applied 
to a derivation of the frequency dependent dielec- 
tric susceptibility and its temperature dependence 
[1,21. 

Non-linear relaxation is observed experimentally 
when a large deviation from equilibrium is pro- 
dueed by a suitable force field. Examples of such 
time dependent recovery would be the relaxation 
of ordered electric systems after the removal of a 
large static electric field [3], or the relaxation of 
mechanical stress under the application of a large 
mechanical strain [4]. A common feature of such 
experiments is a time region in which the deviation 
in the property being monitored, M', is proportional 
to the logarithm of the time since the initiation 
of the perturbation, i.e. 

M' = -- a ha (t). ( i )  

Earlier experimental investigation has indicated a 
value of one tenth for the parameter a [5], when 
M' is normalized in terms of its zero time value. 

A development of the present authors' work 
[1,2] to describe non-linear relaxation is presented 
here. It will be shown that the observed behaviour 
of Equation 1 is the result of a time power law of 
the form t -n, characteristic of a co-operative 
relaxation mechanism. Furthermore it will be 
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shown that the parameter a, can be expressed as 

(1 -- n)" F ~  (b, Xo) (2) 

where the exponent n can be simply interpreted 
as the degree of correlation of the relaxation 
mechanism in the response of the material to 
an external perturbation, just as in the case of 
dielectric relaxation, and the function F'(b, Xo) 
depends only on the initial and final states of the 
system. 

2. Theory 
The theory presented here is based on a picture 
of a material in which small, local, groups of 
atoms, ions or molecules have two alternative 
positions which they can occupy. Such a situation 
is already implicit in the standard Debye approach 
to relaxation [6] and is the basis of much work of 
our present understanding of mechanical loss [4]. 
These local systems can be represented by a local 
double minima potential in the potential energy of 
the system, with a well defined potential barrier 
between the minima. The minima are not, in 
general, of identical energies although the differ- 
ence in the minima energies may be small. The 
properties of glassy materials have been exten- 
sively discussed in terms of local states such as 
these, with allowance made for quantum mech- 
anical tunnelling between the local minima [7-9] .  

Such systems relax exponentially in time only 
if the individual local systems are non-interacting, 
which is not the case for solids or liquids. Interac- 
tions between the local systems can occiJr through 
an exchange of virtual phonons [10] and can be 
represented in the form of a spin-spin interaction 
in which the two alternative local minima play the 
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Figure 1 Diagrammatic representation of a double minima 
potential energy for the average local system. The symbols 
are defined in the text. Process (a) is the thermally acti- 
vated relaxation mechanism, process (b)is the co-operative 
tunnelling mechanism and process (e) is the exchange 
fluctuation mechanism. The minima are labelled 1 and 2 
for clarity. 

part of the spin orientations in a spin 1/2 system. 
Non-exponential relaxation in time results from a 
consideration of the implications of the various 
contributions to the interactions [1, 2]. 

Firstly there is an interaction dependent only 
on the longitudinal component of the interacting 
local spins which contributes a mean field term to 
the total free energy of the whole system. The 
energy eigenstates of such a system are no longer 
those appropriate to the individual local systems 
but are states in which the orientations of all the 
spins must be simultaneously specified. That is 
they are configuration states. The system can 
therefore be described by the macroscopic poten- 
tial energy diagram of Fig. 1, in which the minima 
refer to configurations in which all the orientations 
are in one of two alternative directions. 

The average longitudinal component of  the spin 
is the thermal population difference between the 
configurations of the two minima of Fig. 1, and 
is given when normalized to unity by 

Me = tanh D(B' Me) (3) 
kT 

where the energy difference D(B, Me) is a function 
of the mean field energy, which is itself proportional 
to Me, and B, which is the average value of the 
local energy difference, and is equivalent to a local 
field. 

The thermal average value of Me is established 
either by activation over the minimum potential 
barrier A between the two sets of configurations 
or by thermally assisted tunnelling through the 
potential barrier. A deviation from equilibrium 

will occur when an external strain is applied to 
the system. The field of  the strain, F, contri- 
buting an extra term to the energy difference B, 
the magnitude of the extra term being dependent 
on the average local coupling constant d. In the 
dielectric context, F is the applied electric field 
and the coupling constant is the local dipole 
moment. Upon removal of the external field the 
system relaxes towards equilibrium. The non- 
linear (in Me) form of Equation 3 ensures that 
in general the relaxation will also be non-linear. 
The detailed form of Equation 3 is determined 
by D(B, Me) and will be general for specific 
classes of interactions. For simplicity here the 
form appropriate to a material which undergoes 
alignment of  the interacting systems is chosen, 
that is 

D(B, Me) = B + kTcM e (4) 

where B and the mean field interaction, kTe, are 
system parameters. It should be pointed out that 
the form of the time development is independent 
of the choice of D(B, Me) which only determines 
such factors as the detail of the temperature 
dependence. 

The relaxation of a deviation in such a system 
as that defined by Fig. 1 and Equation 4 is given 
by [1, 11] 

dM(t) [B + kTcM(t) ] 
dt - u E" cosh " ~  ] 

where M(t), which is a function of the time t, is 
the instantaneous value of the normalized popu- 
lation difference, 

n 1 ( t )  - n2 ( t )  
M(t) - (6) 

nl(O + n2(t) 

and u~ is the activated rate constant given by 

:~ vr~ = Uo" exp -- (A/kT) (7) 

with PO the quantum mechanical transition rate 
at tbe'~top of the barrier and of the order of 
10 -13 sec -t: or less. In some systems, particularly 
at low temperatures, a thermally assisted quantum 
mechanical tunnelling rate may be more appro- 
priate, but again this does not affect the form of 
the time development. 

A linearized version of Equation 5 has been 
investigated previously [1, 2]. In the linear form 
the instantaneous deviation from equilibrium 

639 



M'(t) is given by 

~W(0 
dt - COp" M'(t) (8) 

in which the rate constant COp is a function only 
of the equilibriu m conditions, and thus of tem- 
perature. The rate of thermal relaxation is then 
determined solely by the equilibrium system 
parameters and the relaxation is therefore an iso- 
thermal dynamic process. 

The general non-linear expression, Equation 5, 
is one in which the instantaneous population 
difference M(t) and the instantaneous equilibrium 
population difference M i {M(t)} given by 

Mi{M(t)} = tank[ B + kTeM(t) ] kT (9) 

approach each other asymptotically, and both 
satisfy Equation 3 at equilibrium. This process is 
thus still an isothermal form of relaxation and the 
rate Equation 5 can be written as 

dt PE" cosh ~ ] 

x {M(t)--Mi[M(t)] } (10) 

which can be solved by integration to give 

fM M(t) 1 (o) O M  I Z ( M ) I -  = - rE" t (11) 

in which 

Z(M)= {cosh[ -B + kTeM(t) J (M(t) --Mi[M(t)])}. 

(12) 

M(0) is the initial value of M(t) immediately after 
the removal of the external force field. It is there- 

fore given by 

[B + F" d + kTeM(O) ] (13) 
M(0) = tanh kT 

with d the coupling constant of the system to the 
field F. 

The integral over M can be written symbolically 
a s  

~M M(t) (o) dM IZ(M)1-1 = Y { M ( t ) }  - Y{M(0)} 

(14) 

in which case the rate equation, Equation5, 
assumes the form 

dY{M(t)} 
- r E .  ( 1 5 )  

dt 

Before obtaining an expression for Y{M(t)} the 
other processes which affect the rate must be 
introduced. These are co-operative tunnelling and 
fluctuation mechanisms. The time development 
due to these two processes assumes a unique form 
as a consequence of the co-operative nature of the 
interacting system. It has been pointed out already 
that the eigenstates of the system are macroscopic 
configuration states and Ngai etal. [12] have re- 
cently established computationally, that for a wide 
variety of materials such states have a continuum 
of energy eigenvalues up to a cut-off value ~', with 
a constant number density per unit energy. The 
presence of such a spectrum of states has been 
established experimentally in the case of glasses 
[9]. It was recognized by Ngai et al. [12] that this 
property was one of the two requirements for a 
time power law decay of the form observed in the 
infrared divergence effect [13, 14]. The second 
requirement is that the excitations within the 
system should be between states that have either 
full or zero thermal population. 

This second criterion is met automatically by 
the co-operative system described by Fig. 1, at any 
temperature. Consider a configuration in one of 
the minima in this diagram, the configuration 
being defined by a set of local systems with their 
orientation simultaneously in the direction chosen. 
Each of these orientations is thus fully occupied 
while the alternative orientation, which belong to 
a configuration in the opposite minima, are 
completely unoccupied. 

The two co-operative mechanisms affecting the 
relaxation process and the generation of the power 
law decay in time have been described in detail 
previously [2], but, as they bring together a 
completely new concept, they will be surveyed in 
some depth here. The co-operative tunnelling 
mechanism arises from the presence of local 
tunnelling which splits the energy levels in the 
local double potential minima. The atoms in 
one state must now be considered to oscillate 
between the minima at a rate determined by the 
tunnelling matrix element. Relaxation to the lower 
state can only occur when the excess energy is 
emitted by the state. It is usual to consider this to 
occur by means of phonon emission, in which case 
the energy is released to the phonon bath, and 
thermally assisted tunnelling takes place [15]. In 
the system described here however there is an 
alternative process which can absorb the excess 
energy. An oscillating local system describes the 
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movement of a configuration from one minima to 
the other. This represents a state of the system in 
which each minima is excited by the occupation of 
a previously unoccupied state of higher energy 
than would be appropriate to the instantaneous 
equilibrium. This transient is degenerate with the 
excitation of a large number of alternative con- 
figurations, all of which may be excited by the 
same local tunnelling process. Given the energy 
spectrum and population properties of the con- 
figuration states the excess energy of a local 
tunnelling state can be distributed among the 
alternative excitations of the system leading to a 
relaxation decay of the form 

cos (mr/2) �9 (ft) -n (16) 

for the initial system. Here n is the square of the 
distortion occurring for the average tunnelling 
event, normalized with respect to the maximum 
possible distortion for the system. The average 
property requires that 

0 < n ~< 1 (17) 
furthermore n can be regarded as the degree of 
correlation of tunnelling process in the system 
[1]. 

The excess energy is redistributed throughout 
the correlated energy system and is eventually 
released into the phonon bath. The release how- 
ever may take place from any one of the number 
of local systems correlated with the initial system 
out of equilibrium, rather than only from the 
initial state. 

This decay competes with the thermal process 
described by the rate equation, Equation 5, and 
relaxes the system towards its instantaneous equi- 
librium value. The deviation therefore has the 
correlated relaxation rate 

dY{M(t)} 
- v E" cos (nrr/2) �9 (ft)-".  (18) 

dt 
The second process that affects the rate of 

relaxation is the fluctuation mechanism and 
results from the part of the interaction between 
local systems which corresponds to spin exchange. 
The mechanism synchronously exchanges local 
systems between configurations in the two minima 
of Fig. 1 and can be termed a flip-flop process. 

( d Y{___M(t)} ~ = 
dt / --  v~" cos 

~ -  - -  b '  E " COS 

After an exchange has taken place the population 
difference is unchanged. This form of exchange is 
only possible between systems whose local value 
of B, Bb differ by an amount varying from zero 
up to the magnitude of the exchange energy itself. 
When the difference in B is not zero a new average 
value of B results. Because of this the state in each 
of the minima correspond to an excitation with 
respect to the new value of B, and the system 
evolves towards the new state following a different 
time power law t -m, where rn is defined in a 
similar manner as n and describes the correlation 
of the flip-flop processes. However the values of 
B and Me are equilibrium system averages and 
must be restored. The restoration occurs because 
all possible pairs of local systems are coupled by 
this interaction and any disturbance generates the 
restoration through other flip-flop pairs which 
restores a new macroscopic state satisfying the 
initial conditions. The restoration is not indepen- 
dent of the decay and its initiation is therefore 
delayed by the initial decay. As the time average 
of the fluctuations is independent of time the 
complete time dependence of the fluctuations 
has the form 

t; m" (t -- tl) +m (19) 

which has a time average value of 

I'(1 - - m ) "  r(1 + m) (20) 

where P( ) is the gamma function. 
These fluctuations take place throughout the 

decay process and continue as a power law noise 
[16] when the system attains equilibrium. Since 
the magnitude of M(t) is not affected they do not 
have a direct effect on the relaxation Equation 18. 
However their destruction of the instantaneous 
configuration as t-1 rn competes with the relaxation 
decay, while the restoration starting at time tl 
and following the power law ( t -  tl) m produces 
a new configuration at time tl which satisfies the 
original conditions and which will relax as described 
by Equation 18 with the new time zero being ta. 
The observed relaxation rate is thus a composite 
of all the fluctuation-restoration initiated rates 
and requires to be averaged over this process. The 
observed rate is thus 

( 2 ) . ( ~ )  -n ~ ( t - t a ) - n ' ( t - t ~ ) m ' t - ~ m ' d t l  (21a) 

ot(t  - h ) "  t ;  m dt~ 
/ \ 

( n ~ l . ( ~ t ) - n . p ( l + m - n ) ' [ P ( 2 - - n ) ' P ( X + m ) ] - I  (21b) 
\ z /  
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Figure 2 A plot of the so lut ions  
to  Equation 3 using Equation 4 
for the  form of D(B, Me). A 
parametric variable, B / (k Te), has 
b e e n  used and the inverse tem- 
perature scale normalized in 
terms of T e. The dashed region 
indicates unstable solutions. 

It is usual to observe M(t) or the deviation of 
M(t) from the equilibrium values of Me given by 
Equation 3. This can be obtained from Equation 21 
by integrating the non-linear relaxation current 
over the time t and solving the resulting equation 
for M(t). Thus 

(Y{M(t)})--(Y{M(O)})= --UE COS ( ? )  �9 (~t) -n 

t F(1 + m - -n)  
(22) X 

(1- n----)" p(2- n)r(1 +m) 
which is a completely general expression contain- 
ing all the time dependence involved in non-linear 
relaxation. In order to complete the solution an 
expression for M(t) must be obtained which will 
in detail depend on the form of D(B, Me), however 
a general form can be generated and will be 
examined here. 

3. Non-linear deviation from equilibrium 
The form of Y{M(t)} defined by the integral 
expression, Equation 11, will be illustrated with 
reference to the form of D(B, Me) given in 
Equation 4 and appropriate to a material under- 
going an alignment transition. At temperatures 
greater than the critical temperature Te Equation 3 
has only one solution. However when T is less than 
Tc three solutions are possible, as shown in Fig. 2. 
Two of the solutions correspond to alignment of 
the system and have values at zero temperature of 
+ 1 and -- 1. The third solution, with a zero tem- 
perature asymptotic value of - -B/kTe,  is unstable 
with respect to small deviations from equilibrium. 
When the normalized variable B/(kTe) is greater 
than unity only one solution exists and the system 

is always in the positive alignment direction. The 
effect of  a large external field at a given tempera- 
ture is to cause the state of the system, defined by 
one of the solutions, to relax to the state appro- 
priate to the new value of B, that is 

B -+ B +/7" d. (23) 

On removal of the field F the system will recover 
the nearest state appropriate to the original value 
of B, showing an identical form of relaxation as it 
does so. 

The detail of the relaxation can be determined 
by defining a deviation from equilibrium M'(O as 

M'(t) = M(t)--Me (24) 

with the zero time value,M'(0), given by 

M'(O) = Me(B + F'd)--Me(B) (25) 

where Me(B ) is 

M e = tanh ~-~ ] .  (26) 

The function Z(M) then becomes 

[B + kTeMe ~. e M'Te/T 
Z(M) cosh 

' l 2 

x [M'(1 + e -2M'T~T) 
I t 

+ (1 --e-2MTgT)(MMe - 1 + Me2)]. 

(27) 

In order to proceed further it is necessary to 
approximate the function in square brackets in 
Equation 27 to the second order in M', which is 
valid when M' is a large deviation, a term which we 
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Figure 3 The relaxation characteristics of 
the co-operative system described by 
Equation 32. The plots have been 
normalized in terms of the initial devi- 
ation and the values of the parameters 
b and Xo for the curves are given in the 
figure. 

shall define later. Thus 

Z(M') = c o s h [  B + kTcMelM'.eU'TdT 
kT J 

where 

G =  1 -- --f- 

and Equation 14 becomes 

Y{M'(t)} -- Y{M'(0)} = 

dll/I' e-(M'Te/T) 

(28) 

(29) 

_~ P E r  M'(t) 
COp JU'(O) M'[1  - -  (1 --M~/G~'Tr 

(30a) 

where COp is the rate constant for the linearized 
rate Equation 1 and is given by 

COp = v E'cosh(-B+kTeMel[1-(l-M2e)~]-s ] " 

(31) 

Equation 30 is derived assuming a large positive 
deviation, M', which implies that the equilibrium 
value,Me, in the absence of  the field F is a negative 
quantity for T < T e. When M'  is a large negative 
deviation, Me has a positive value in the same 
temperature range and Equation 14 becomes 

r { [ M ' ( t ) i }  - r { [ M ' ( o ) I }  

VE ;IM' (t)i d [ M ' i  e x p  - -  ( [M' ITc/T)  

= ~-pp JIM'(0)l ! [M' I [1- - (1  +Me/G)[M'ITe/T ] 
(30b) 

where the integral is over the modulus of  the 
deviation. Here the sign of  M e in the denominator 
has been changed with respect to that in Equation 
30a. If  the branch of the solutions of  Equation 3 

with the asymptotic value - -Bl(kTc)  at zero tem- 
perature is neglected as a possible equilibrium 
value for the recovery process of  the system 
Equation 30b can be taken as the general result 
with M e in the denominator regarded as [Me[ for 
temperatures less than the critical temperature Te. 

Equation 30b is integrable. For convenience we 
se t  

x = [M'(t)l" To~T; Xo = [M' (0 ) I 'Te /T  

and 
b = G/(C + [M I) 

to obtain Equation 22 in the form 

E 1 (x )  - -  E1 (Xo) + e - b  [E l  (Xo - -  b) - -  E 1 (x  - -  b ) ]  

cos (ng/2)" F(1 + m - - n )  
= -- w v �9 t -  (~'t) -n-  (1 -- n)" r ( 2  - n)" r (1  + m)  

(32) 

where Ea ( )  is the exponential integral [17]. This 
expression is shown diagramatically in Fig. 3 as 
a plot of  the normalized deviation X/Xo against the 
logarithm of  the left hand side of  Equation 32, 
that is against log t 1-n. A range o f x o  and b have 
been used to show that the limiting value of x at 
infinite time is b. The condition that b<xo,  
which can be expressed in the form 

T IT --  Tc(1 - -Me 2 )1 
M'(O) > - -  

ire [T- -Te(1  - - M ~ ) +  [M~I] 

(33) 
defines a large deviation. 

Two general statements can be made with 
regard to Equation 32. Firstly the appearance of  
the exponential integral function arises because of  
the large deviation approximation of  Equation 3 
and is therefore independent of  the exact form of  
D(B, Me). Equation 32 is a quite general result for 
all materials behaving as described by the double 
minima macroscopic potential shown in Fig. 1, 

6 4 3  



1.0 

0"5 
X/Xo 

10 x~ 
30 

100 

I I I 

10-6 I (~S 10 % I0 3 I0 2 10 -I 1"0 10 

~.(1 -n) 

F~gure 4 The relaxation charac- 
teristics of the co-operative 
system described by Equation 35 
and applicable at temperatures 
much less than T e. The plots 
have been normalized in terms 
of the initial deviation xo, the 
magnitude of which is given for 
each curve. 

Secondly the functions G and b have the properties 

G --> 0+ G ~ I  
f o r T  ~ Teand f o r T  ,~ Te. 

b - ~ O +  b ~ � 8 9  
(34) 

Hence for temperatures close to Te, but less than 
Te, the second set of exponential integrals, in 
parenthesis, dominate the behaviour of the system. 
As the temperature decreases this term decreases 
in importance. The exact detail of the contri- 
bution clearly depends on the form of D(B, Me). 
In the higher temperature range the magnitude of 
M'(O) has to be greater than G/Me and at low tem- 
peratures greater than �89 so that in either 
case quite small magnitudes can be considered as 
large deviations. 

For temperatures in excess of the critical tem- 
perature the large deviation approximation derived 
here is inapplicable because there is only one solu- 
tion to the transcendental Equation 3 and the 
linearized approach derived earlier [2] is applicable, 
even at very large magnitude deviations. Exper- 
imental measurements are seldom made under this 
condition as most materials are approaching a 
phase transition. For temperatures in the region 
of Te the full form of Equation 32 is applicable 
but at lower temperatures Xo becomes large and 
Equation 32 can be approximated by 

El(x)  - -El  (Xo) o: -- wp" (~)-n . t l-n.  b-l. 

(35) 
Fig. 4 shows this function, in a similar presentation 
to that of Fig. 3. The asymptotic value of t h e  
deviation at large times is now zero, effectively 
as the ratio b/xo has gone to zero. 

It should be noted that in both Figs 3 and 4 a 
region does exist, in the neighbourhood of the 
mean deviation, for which the relationship 

, Tc 
x = M ( t ) - f -  c~ - - ( 1 - - n ) - l n ( t )  (36) 

applies, as discussed earlier. The gradient in this 
region, the transition between the two limiting 
values at short and long times, is directly related 
to the characteristic parameter n and extremely 
slow responses could be observed if n were to 
approach unity. In this case the experimental 
observation of the approach to equilibrium 
becomes difficult because of the extended time 
scale. The curves representing the solution to 
Equation 35 are symmetric about the value Xo/2 
for Xo/> 3, which is a convenience if only part 
of the complete relaxation has been observed 
experimentally. This symmetry is lost when the 
higher temperature, more general form of solu- 
tion, is applicable as shown in Fig. 3. The presence 
of the fluctuations of the system, governed by the 
characteristic parameter m, appear as power law 
noise on the observations [16], and may be 
identified most clearly at long times when the 
signal to noise ratio is small. 

4. Application to experiment 
In the previous sections we described the non- 
linear relaxation of the normalized population 
difference M(t) for a system of interacting, bistable, 
units. These units are regions of disorder embedded 
in an ordered matrix the units of which vibrate 
within single minima potential wells. The tunnelling 
transfer between the local bistable minima of the 
disordered regions corresponds to many minute 
adjustments of the vibrational origins of the 
surrounding matrix, which allow an effective 
removal of the potential barrier to re-orientation 
during the transfer. The value of M e represents 
the average displacement of the disordered regions 
from their median positions at the top of the 
potential barrier, Fig. 1. 

The variation of M(t) with time thus represents 
the relaxation of a physical dimension of the 
system after removal of an external force. The 
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most common experimental situation is, however, 
one of constant strain, the stress reducing as the 
system relaxes. This stress relaxation is related to 
the relaxation of M(t) in the following manner. 
The external stress does work on the matrix 
causing a fixed strain which alters the local poten- 
tials of the bistable units. The changed potential 
is equivalent to a field F conjugate to the bistable 
displacement and favouring one of the orientations 
over the other. The average displacement relaxes in 
order to come into equilibrium with the new total 
field, and in doing so internal energy is transferred 
from the matrix to the bistable system. The energy 
transferred in time t is 

F. d [M(t) -- M~(B)] 

= F'd{[M(t)--Me(B + F ' d ) ]  

+ Me(B + F'd)--Me(B)} 

= F'd[--M'(t) +Me(B + F.d) --Me(B)]. 

(37) 

The internal energy within the elastic matrix is 
correspondingly reduced, allowing a reduction of 
the externally applied stress, o, maintaining the 
constant strain eX. Thus 

F" d[Me(B + F" d) --Me(B ) --M'( t ) ]  

= eX[o(0) -- o(t)] (38) 

which allows the time behaviour of M'(t) to be 
equated with that of  e(0. It should be noted that 
the field F remains constant because the external 
strain is held fixed. The internal energy of the 
elastic matrix is regarded as being totally recover- 
able and in balance with the external stress, 
whereas the relaxation of the bistable system 
involves exchange of energy with the heat bath 
and is thus not recoverable in a coherent manner. 

Equations 32 and 35, and the corresponding 
diagrams, show that the relaxation characteristic 
is dependent on the magnitudes of the initial 
perturbation, Xo, the equilibrium value after 
ins time, b, and the characteristic parameter 
for the system, n. In general the absolute values of 
these will not be known for a particular case under 
investigation and hence direct comparison between 
theory and experiment is difficult, A convenient 
method of determining the magnitudes of  the 
system parameters is given here. 

As the experimental results are commonly 
presented in an initial deviation normalized form 
we set z = X/Xo and let z(rn) be the mean value of 
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Figure 5 A plot of the function Fm(b, xo), Equation 38, 
against b/xo for a range of values ofxo. 

the normalized variation, i.e. (Xo+ b)/2Xo. The 
gradient of the relaxation characteristic can then 
be derived from Equation 32, as (c.f. Equation 2), 

(d--~nt) = - ( 1 - n ) ' F ' ( b ' x ~  

with 

{ F~(b, Xo) = Ef fxo) - -E~ 

x e (xo'bm �9 (x~ _ / ) 2 ) .  (4bXo)-i 

(40) 

which is shown in Fig. 5. If now the experiment is 
carried out with a different value of the initial 
perturbation Xo the rate of change of the gradient 
at the mean value will also contain the term 
( n -  1), but the logarithmic rate of change will 
not. Furthermore the ratio b/xo is accessible from 
the relaxation characteristic and hence Xo can be 
determined. Two cases, however, have to be 
considered. Either b is independent ofxo,  and the 
ratio b/Xo changes with Xo or the ratio stays 
constant as Xo is altered. Examination of exper- 
imental results indicates that the latter case is 
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Ftgure 6 A plot o f  the  funct ion Fm(cxo, xo), 
Equation 41, against x o for a range of values 
of b/x o. 

x 0 

applicable in which case 

d In [F'(b, Xo)] 

r d lnxo  
E x - -b  ,(-A 

= 

e(Xo- b)/2 "(xg -- b 2) 

4 " X o ' G ( b ,  Xo) 

(Xo + b) 
2 

= F " ( c X o , X o ) .  

The equivalent function for constant b is 

F "  (b, Xo) = 

(41) 

(Xo + b)- exp [-{(Xo- b)] 
4 "Xo "F'(b, Xo) 

(x~ + b 2) (42) 
+ iXo + (x~ - b 2) 

and both F"(cxo, Xo) and F"(b, Xo) are indepen- 
dent of the function ( n -  1). Fig. 6 gives the 
function F"(cxo, xo) for a range of values ofb/xo 
as a function ofxo.  

The equivalent expressions for the approxi- 
mation leading to Equation 35 are 

Fm(xo ) = EI(~Xo)--EI(xo)" �89 x~ (43) 

and 

F "  (Xo) = -- {Xo -- (1 -- e- ~Xo). [2" F m (Xo)]- 1 

(44) 

which are the limiting cases of  Equations 40 and 
41 as b becomes small, and are shown in Fig. 7. 

A particular set of measurements by Kubat, 
Selden and Rigdahl [18] on high density poly- 
ethyelene under uniaxial extension with a useful 
range of initial strains have been reported. The 

strain, and gradients of the relaxation character- 
istics, are given in columns 1 and 2 of Table I. The 
analysis has been carried out in terms of the 
mean values of the strains and these are listed in 
column 3. As b/xo was, experimentally, constant 
Equation 41 applied and in deriving the gradients 
given in column 4 it was necessary to make use of 
the power relationship between stress and strain 
given in the original paper. From the gradients the 
normalized strains were determined in column 6. 
Making use of Fig. 6 of this paper the gradients 
Fm(cXo, Xo) were found to be essentially constant 
at - 0.24. These values gave the magnitudes of n 
listed in column 9, with a well defined average of 

0 .656  �9 

The constant value of b/xo observed in these 
results implies that b is a function of the parameter 
n. In general physical terms this can be understood 
in the following manner. The parameter n has been 
ascribed to the correlation index of single re-orien- 
tations as affected through the tunnelling relax- 
ations, This behaviour transfers energy from the 

t.o 

Fro(x~ -1 
& 10 

,-~(x o) 

1 d2 
10 "I 0 10 10 2 

xo 

Ftgure 7Plots of the functions Fm(xo) and Fm(Xo), 
Equations 41 and 42, against xo. 
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T A B L E I Analysis of uniaxial extension relaxation in high density polyethylene 

(I) (2) (3) (4) (5) (6) 
eo d(~r/ao)/d(ln t) eo (mean) d d(o/%) b/xo Xo 

d In(a/go) d(in t) (from Fig. 6) (from Fig. 6) 

(7) (8) (9) 
Fro(b, xo) (n -- 1) n 

= (2)/(7) 

5.7 10 -3 --7.8 10 -5 
1.0 10 -2 2.7 10 -5 0.2 0.17 --0.23 --0.35 0.65 1.5410 -~ --8.110 -5 
2.0 10 -~ 2.76 10 -~ 0.2 0.17 --0.23 --0.35 0.65 2.64 10 -2 --8.3 10 -2 
3.5 10 -2 1.88 10 -2 0.2 0.11 --0.25 --0.34 0.66 4.4510 -2 --8.5 10 -~ 

Columns 1 and 2 contain the numerical information taken from the published curves [18]. The second derivative in 
column 4 has been obtained by interpolation and hence corresponds to the interpolated eo values presented in column 3. 
In determining column 4 as 0/% cc (e/eo) ~.'~, d/d In(g/go) = 1/1.7[d/d ln(e/eo)] = 1/1.7(d/d in e). 

re-orienting bistable units to the matrix connecting 
these units, and is reflected in the dielectric 
relationship established by Jonscher [19] 

X" (co)/X' (co) = cot (nzr/2); co >> COp (45) 

in which the energy transferred irretrieviably to 
the system, X"(co), is in a fixed ratio to that 
which can be coherently recovered, X'(co). A non- 
zero value of  b is similar in that it implies an 
irremovable fraction o f  the original work that is 
not  coherently recoverable. 

The values of  Xo determined from the exper- 
imental analysis, and listed in Table I, are surpris- 
ingly constant over the range of  initial strains 
applied to the sample. It is possible that this may 
indicate that the actual strains used were not 
sufficientlylarge to give strong non-linear behaviour, 
c.f. Equation 33. In view of  this it is gratifying 
that the parameter n determined in the analysis 
does not vary significantly, as this indicates that 
the method developed here is applicable to small 
strain values. It is worth noting that the value o f  
the parameter n obtained, 0.66, is similar to that 
obtained more directly from the examination o f  
the frequency dependence of  the susceptibility of  
polyethylene [20], which affords further confir- 
mation of  the validity of  the approach presented 
here. 

5. Discussion 
The many-body, co-operative, theory of  relaxation 
previously applied to the determination of  the 
linear dielectric susceptibility [1 ,2]  has been 
extended to describe, quantitatively, non-linear 
relaxation under large deviations from equilibrium. 
The time development has been derived as a time 
average composite non-linear relaxation current in 
which the system attempts to achieve an instan- 
taneous thermal equilibrium with its population 
differences. It should be appreciated that the 

average linear relaxation current determined 
earlier [2], which is (dM'(y)/dt)  in the notation 
used here, cannot be obtained by solving the 
average non-linear current for the deviation 
M'(t) and differentiating with respect to time, 
that is 

d[Y(M')]; d [Y(M')] dM' 
-d~ / 5 dM' " ( - - ~ - ) "  (46) 

A formal solution has been obtained which has 
been illustrated with references to a system under- 
going an alignment transition. It has been shown 
that the general result divides into two contri- 
butions. One of  these is associated with the 
alignment transition region and the other domi- 
nates at low temperatures. The latter is dependent 
on the general features of  the system rather than 
on its particulars as regards the nature of  the 
transition. The general result shows a relaxation 
characteristic with a slow move out and approach 
to equilibrium, on a logarithmic time scale, and 
an intermediate region in which the deviation 
is proportional to (n - - 1 ) l n  (t), as has been 
commonly observed in mechanical relaxation and 
other investigations. This feature is the most 
important result presented here and is perfectly 
general for the basic model developed being 
completely independent of  any details of the 
co-operative interactions involved in the transition. 
The exponential integral decay function, Equation 
35, has been proposed as a relaxation character- 
istic [4] but is shown here to be a particular 
limiting case o f  behaviour. 

The rate constant, cop, presented here is 
identical, in all respects, to that obtained for the 
linearized rate equation [1 ,2] .  On normalizing 
the time scale with respect to the inverse of  cop, 
which is equivalent to scaling the experimental 
results, a non-dimensional factor (cop/~")-" appears 
on the right hand side o f  Equation 32. This indi- 
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cares the presence of a dynamical scaling law [21] 

similar to that predicted and observed for the 

linear susceptibility [2, 22]. 
For small values of the normalized strain, Xo, 

the parameter F ' ( b ,  Xo) can be determined from 

the information contained in Fig. 5 to have a 

magnitude of about 0.3. The parameter n, for 
the particular relaxation system examined in detail 

here, has been determined as 0.66. Hence the 

product (1 - - n ) ' F ' ( b ,  xo) has the value of 0 . I0 

in complete agreement with Kubat's observation 
[5] of a general value of 0.1 for the parameter a, 

as defined by Equation 1. 
It has been shown that the theory developed 

here is applicable to experimental observations 

under constant strain and stress relaxation. In 
particular it has been shown that the co-operative 
characteristic parameter n is an essential descriptor 
of the system and cannot be neglected in a full 
analysis of experimental measurements. 
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